If Data Is the New Water, Here's How to Tap that Well

Drinking Value from Your Organization's Most Plentiful Resource
If data is the new water, why are so many organizations drowning?
When analysts and the media talk about data, it’s always as a problem that needs rapid resolution. There is breathless coverage about the 5Vs of big data. We learn that it’s increasing exponentially in volume, velocity, and variety – eluding our ability to determine its veracity and value. We’re told that if we could only harness data, we could drive workforce productivity, streamline operations, and reduce risk and cost.
All this is absolutely true, but these outcomes are the how, not the why of controlling data.
The #1 Reason to Get Control Over Your Data
The best reason to improve data accuracy, access, and searchability is to drive better decision making. Despite myriad technology innovations – from SaaS business applications, APIs, and data lakes to cloud-based storage and ultra-fast backups – data is still mired in applications, databases, and devices across your organization. Thus, instead of going to a central well to draw forth data, your business teams and users must use “pipes,” or various connections linking systems.
They also sometimes bootstrap data gaps with manual processes, such as when your teams retype data in Excel spreadsheets. As a result, the “data water” that your teams hope is clean and usable is often dark and dirty, impeding their ability to use it for decision making.
Caption: Qlik/IDC Report.
The Race to Develop Analytics Is On
Fortunately, the C-suite at your company is well-aware of this problem. That’s why 87% of CXOs surveyed by IDC say that developing a more intelligent enterprise is their #1 priority for the next five years. According to IDC, CXOs want to improve data decision making by:
- Spending 80 percent of the time on analytics, and just 20 percent on data preparation. (Today, the reverse is true for most organizations.)
- Evaluating data needs during the problem definition phase of initiatives (including its extent, condition, and reliability).
- Practicing data-driven decision making and eliminate human bias. (That’s especially important as organizations increase their use of artificial intelligence (AI) and machine learning (ML)).
- Ensuring that teams and businesses make data-driven decisions rather than defaulting to experience or instinct.
Mastering Data Has Its Rewards
Organizations that achieve data-driven decision making:
- Drive 2X the business value as their peers with the worst capabilities.
- Improve revenue, operational efficiency, and profitability by an average of 17% (so say three in four respondents).
Source: Qlik/IDC.
Why It’s So Hard to Manage and Control Data
So far, so good. With such a payoff, it may seem surprising that more organizations haven’t achieved data mastery. However, there is a good reason. Data, it seems, is difficult to conquer. The CXOs IDC surveyed say they are struggling with:
- New data types (45%)
- New external data (40%)
- New internal data (45%)
- Major architectural changes (30%)
- New KPIs (38%)
- New analytics (47%)
How Many Data Types Are There?
It’s impossible to know just how many data types there, as new content is being created all the time. What’s more helpful to is to understand data categories. According to data scientist Michael Gramlich:
- Structured data is data that is well-organized. Surprisingly, it’s not always easy for machines to read and interpret. Examples include Excel and Google spreadsheets, CVS files, and relational database tables – all content created by humans.
- Semi-structured data is data with some degree of organization. Examples include TXT files, HTML files, and JavaScript files. So, this group includes organized emails, web pages, social media, chat and voice transcripts, and more. This data is typically captured by organizations’ content management systems (CMS), but may have weak search capabilities.
- Finally, unstructured data has no predefined organizational form or specific format. Examples include IoT analog signals, texts, pictures, video, human speech, and sound files. This data is often difficult to interpret, which is why AI and ML are so important for search and analytics applications.
Where Your Organization’s Data Is Stored
Just where is your organization’s data stored? As the graphic below demonstrates, it’s likely that it is stored in a wide array of places: across data centers, cloud, at the edge, and in other locations. That presents a challenge for data science and analytics teams that want to surface data and make it more usable.
As IoT applications grow in popularity, even more of this data will push towards the edge. Organizations that want to operationalize it will have to become expert at choosing the right data from the vast torrents of inputs to capture and analyze.
Source: Seagate/IDC.
What Are the Risks of Using Bad Data?
So, what happens if your organization can’t solve its data water challenges and get good, clean data to interpret? Your leaders and teams run the risks of making bad decisions.
- In manufacturing, this could mean issues with product innovation, inventory management, supply chain delays, product quality or machine issues, unplanned downtime, and regulatory risks, among other problems.
- In financial services, bad data can lead to excessive credit, financial, operational, compliance, and legal risks, among others.
- In healthcare, poor data can lead to an inability to spot new trends, inaccurate population planning, misaligned services and drug interventions, and more.
It’s easy to see that poor data causes significant business harm across industries. It mires your organization in present-day challenges, while keeping you from identifying and pursuing profitable new opportunities.
How You Can Extract Insights from Vast Data Volumes
Fortunately, poor data, challenging collection and management practices, and difficulties creating analytics don’t need to be your destiny.
When you deploy an AI-powered search engine from Sinequa, you can finally aggregate and analyze all your data. Sinequa provides 200 connectors to its intelligent search platform, to support 350 different document formats. And these numbers are growing all the time. Business applications? Employee emails? Social chatter? M2M connections?
Whatever the format, Sinequa can harness it for search. Our business search engine extracts meaning from your content using natural language processing (NLP), AI, and ML. Users find the content they want, in an easy-to-use interface that also ranks results for relevance.
Imagine accessing the data when and where you need it, being able to enrich this data for use in analytics, and provide it to business teams for decision making. Imagine being certain that the data you see is comprehensive; up-to-date; and easy for your teams to access, view, and analyze.
If you’re experiencing data “leaks,” or the loss of valuable data you need for decision making; collecting “dark data” that’s never used; or using your data science team’s time and talent on data cleaning and interpretation, rather than analysis, you need a cognitive search platform.
Sinequa can help you get started and drive to results faster than you think. Make this year the one you finally master your data challenges and exploit the full power of the wealth of content you, your business, your competitors, and your customers produce.
Learn more about the Sinequa Insight Engine.
Related blog posts.

How Intelligent Search Improves the Search Experience
Today, we have more data available to us than ever before. Yet half of people are confused about where to find information at work.Uncovering insights and making meaningful decisions are key ...

Put Your Content to Work and Fuel Your Workforce With Workplace Search
The evolving ways people work and collaborate have put immense pressure on organizations to transform their workplace - and the stakes have never been higher. Workplace and knowledge management leaders understand ...

Data Loss Prevention: What It Is, How It Works, and Why It's Crucial Today
According to IBM, the global average cost of a data breach is an eye-watering $4.35 million. In the United States, where the cost of a data breach is the highest in ...